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25. Plane-sweep: a general-
purpose algorithm for two-
dimensional problems 
illustrated using line segment 
intersection

Learning objectives:

• line segment intersection test

• turning space dimensions into time dimensions

• updating a y table and detecting intersections

• sweeping across and intersection

Plane-sweep is an algorithm schema for two-dimensional geometry of great generality and effectiveness, and 

algorithm designers are well advised to try it first. It works for a surprisingly large set of problems, and when it  

works, tends to be very efficient.  Plane-sweep is easiest to understand under the assumption of nondegenerate  

configurations. After explaining plane-sweep under this assumption, we remark on how degenerate cases can be 

handled with plane-sweep.

The line segment intersection test

We present a plane-sweep algorithm [SH 76] for the line segment intersection test:

Given n line segments in the plane, determine whether any two 

intersect;

and if so, compute a witness (i.e. a pair of segments that 

intersect).

Bounds on the complexity of this problem are easily obtained. The literature on computational geometry (e.g. 

[PS 85]) proves a lower bound Ω(n · log n). The obvious brute force approach of testing all n · (n – 1) / 2 pairs of 

line segments requires Θ(n2) time. This wide gap between n · log n and n2 is a challenge to the algorithm designer, 

who strives for an optimal algorithm whose asymptotic running time O(n · log n) matches the lower bound.

Divide-and-conquer is often the first attempt to design an algorithm, and it comes in two variants illustrated in 

Fig. 25.1: (1) Divide the data, in this case the set of line segments, into two subsets of approximately equal size (i.e.  

n / 2 line segments), or (2) divide the embedding space, which is easily cut in exact halves.
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Exhibit 25.1: Two ways of applying divide-and-conquer to a set of objects embedded in the plane.

In the first case, we hope for a separation into subsets S1 and S2 that permits an efficient test whether any line 

segment in S1 intersects some line segment in S2. Exhibit 25.1 shows the ideal case where S1 and S2 do not interact, 

but of course this cannot always be achieved in a nontrivial way; and even if S can be separated as the figure  

suggests,  finding  such  a  separating  line  looks  like  a  more  formidable  problem  than  the  original  intersection  

problem. Thus, in general, we have to test each line segment in S1 against every line segment in S2, a test that may 

take Θ(n2) time.

The second approach of dividing the embedding space has the unfortunate consequence of effectively increasing 

our data set.  Every segment that straddles the dividing line gets "cut" (i.e.  processed twice,  once for each half 

space). The two resulting subproblems will be of size n' and n", respectively, with n' + n" > n, in the worst case n' +  

n" = 2 · n. At recursion depth d we may have 2d · n subsegments to process. No optimal algorithm is known that 

uses this technique.

The key idea in designing an optimal algorithm is the observation that those line segments that intersect a 

vertical line L at abscissa x are totally ordered: A segment s lies below segment t, written s <L t, if both intersect L at 

the current position x and the intersection of s with L lies below the intersection of t with L. With respect to this  

order a line segment may have an upper and a lower neighbor, and Exhibit 25.2 shows that s and t are neighbors at 

x.

Exhibit 25.2: The sweep line L totally orders the segments that intersect L.

We describe the intersection test algorithm under the assumption that the configuration is nondegenerate (i.e.  

no three segments intersect in the same point). For simplicity's sake we also assume that no segment is vertical, so 

every segment has a left endpoint and a right endpoint. The latter assumption entails no loss of generality: For a 

vertical  segment,  we  can  arbitrarily  define  the  lower  endpoint  to  be  the  "left  endpoint",  thus  imposing  a 

lexicographic  (x,  y)-order  to  refine  the  x-order.  With  the  important  assumption  of  non-degeneracy,  two  line 

segments s and t can intersect at x0 only if there exists an abscissa x < x0 where s and t are neighbors. Thus it 
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suffices to test all segment pairs that become neighbors at some time during a left-to-right sweep of L - a number 

that is usually significantly smaller than n · (n – 1) / 2.

As the sweep line L moves from left to right across the configuration, the order <L among the line segments 

intersecting L changes only at endpoints of a segment or at intersections of segments. As we intend to stop the  

sweep as soon as we discover an intersection, we need to perform the intersection test only at the left and right  

endpoints of segments. A segment t is tested at its left endpoint for intersection with its lower and upper neighbors. 

At the right endpoint of t we test its lower and upper neighbor for intersection (Exhibit 25.3).

The algorithm terminates as soon as we discover an intersecting pair of segments. Given n segments, each of

Exhibit 25.3: Three pairwise intersection tests charged to segment t.

which may generate three intersection tests as shown in Exhibit 25.3 (two at its left, one at its right endpoint), we 

perform the O(1) pairwise segment intersection test at most 3 · n times. This linear bound on the number of pairs 

tested for intersection might raise the hope of finding a linear-time algorithm, but so far we have counted only the 

geometric primitive: "Does a pair of segments intersect - yes or no?" Hiding in the background we find bookkeeping 

operations such as "Find the upper and lower neighbor of a given segment", and these turn out to be costlier than 

the geometric ones. We will find neighbors efficiently by maintaining the order <L in a data structure called a y-

table during the entire sweep.

The skeleton: Turning a space dimension into a time dimension

The name plane-sweep is derived from the image of sweeping the plane from left to right with a vertical line  

(front, or cross section), stopping at every transition point (event) of a geometric configuration to update the cross  

section. All processing is done at this moving front, without any backtracking, with a look-ahead of only one point.  

The events are stored in the x-queue, and the current cross section is maintained by the y-table. The skeleton of a  

plane-sweep algorithm is as follows:

initX;  initY;

while  not emptyX  do  { e := nextX;  transition(e) }

The procedures 'initX' and 'initY' initialize the x-queue and the y-table. 'nextX' returns the next event in the x-

queue, 'emptyX' tells us whether the x-queue is empty. The procedure 'transition', the advancing mechanism of the 

sweep, embodies all the work to be done when a new event is encountered; it moves the front from the slice to the 

left of an event e to the slice immediately to the right of e.

Data structures

For the line segment intersection test, the x-queue stores the left and right endpoints of the given line segments,  

ordered by their x-coordinate, as events to be processed when updating the vertical cross section. Each endpoint 

stores a reference to the corresponding line segment. We compare points by their x-coordinates when building the 
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x-queue. For simplicity of presentation we assume that no two endpoints of  line segments have equal x- or y-

coordinates. The only operation to be performed on the x-queue is 'nextX': it returns the next event (i.e. the next left  

or right endpoint of a line segment to be processed). The cost for initializing the x-queue is O(n · log n), the cost for  

performing the 'nextX' operation is O(1).

The y-table contains those line segments that are currently intersected by the sweep line, ordered according to  

<L. In the slice between two events, this order does not change, and the y-table needs no updating (Exhibit 25.4). 

The y-table is a dictionary that supports the operations 'insertY', 'deleteY', 'succY', and 'predY'. When entering the  

left  endpoint of  a line segment s  we find the place where s  is  to be inserted in the ordering of the y-table by  

comparing s to other line segments t already stored in the y-table. We can determine whether s <L t or t <L s by 

determining on which side of t the left endpoint of s lies. As we have seen in chapter 14 in the section “Intersection”, 

this tends to be more efficient than computing and comparing the intersection points of s and t with the sweep line.  

If we implement the dictionary as a balanced tree (e.g.  an AVL tree),  the operations 'insertY'  and 'deleteY' are  

performed in O(log n) time, and 'succY' and 'predY' are performed in O(1) time if additional pointers in each node 

of the tree point to the successor and predecessor of the line segment stored in this node. Since there are 2 · n  

events in the x-queue and at most n line segments in the y-table the space complexity of this plane-sweep algorithm 

is O(n).

Exhibit 25.4: The y-table records the varying state of the sweep line L.

Updating the y-table and detecting an intersection

The procedure 'transition' maintains the order <L of the line segments intersecting the sweep line and performs 

intersection tests. At a left endpoint of a segment t, t is inserted into the y-table and tested for intersection with its 

lower and upper neighbors. At the right endpoint of t, t is deleted from the y-table and its two former neighbors are  

tested.  The algorithm terminates  when an intersection has been found or all  events  in the x-queue have been 

processed without finding an intersection:

procedure transition(e: event);

begin

s := segment(e);

if  leftPoint(e)  then  begin

insertY(s);
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if  intersect(predY(s), s) or intersect (s, succY(s))  then

terminate('intersection found')

end

else  { e is right endpoint of s }  begin

if  intersect(predY(s), succY(s))  then

terminate('intersection found');

deleteY(s)

end

end;

With at most 2 · n events, and a call of 'transition' costing time O(log n), this plane-sweep algorithm needs O(n ·  

log n) time to perform the line segment intersection test.

Sweeping across intersections 

The plane-sweep algorithm for the line segment intersection test is easily adapted to the following more general  

problem [BO 79]:

Given n line segments, report all intersections.

In  addition to  the  left  and  right  endpoints,  the  x-queue  now  stores  intersection  points  as  events—any 

intersection detected is inserted into the x-queue as an event to be processed. When the sweep line reaches an  

intersection event the two participating line segments are swapped in the y-table (Exhibit 25.5). The major increase 

in complexity as compared to the segment intersection test is that now we must process not only 2 · n events, but 2 · 

n + k events, where k is the number of intersections discovered as we sweep the plane. A configuration with n / 2 

segments vertical and n  / 2 horizontal shows that, in the worst case, k  ∈ Θ (n2), which leads to an O(n2 · log n) 

algorithm, certainly no improvement over the brute-force comparison of all pairs. In most realistic configurations, 

say  engineering drawings,  the  number  of  intersections  is  much less  than O(n2),  and  thus it  is  informative  to 

introduce the parameter k in order to get an output-sensitive bound on the complexity of this algorithm (i.e. a 

bound that adapts to the amount of data needed to report the result of the computation).

Exhibit 25.5: Sweeping across an intersection.

Other changes are comparatively minor.  The x-queue must be a priority queue that supports the operation 

'insertX'; it  can be implemented as a heap. The cost for initializing the x-queue remains O(n · log n). Without 

further analysis one might presume that the storage requirement of the x-queue is O(n + k), which implies that the 

cost for calling 'insertX' and 'nextX' remains O(log n), since k ∈ O(n2). A more detailed analysis [PS 91], however, 

shows that the size of the x-queue never exceeds O(n · (log n)2). With a slight modification of the algorithm [Bro 81] 
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it can even be guaranteed that the size of the x-queue never exceeds O(n). The cost for exchanging two intersecting 

line segments in the y-table is O(log n), the costs for the other operations on the y-table remain the same. Since  

there are 2 · n left and right endpoints and k intersection events, the total cost for this algorithm is O((n + k) · log  

n). As most realistic applications are characterized by k ∈ O(n), reporting all intersections often remains an O(n · 

log n) algorithm in practice. A time-optimal algorithm that finds all intersecting pairs of line segments in O(n · log n 

+ k) time using O(n + k) storage space is described in [CE 92].

Degenerate configurations, numerical errors, robustness

The discussion above is based on several assumptions of nondegeneracy, some of minor and some of major 

importance. Let us examine one of each type.

Whenever we access the x-queue ('nextX'), we used an implicit assumption that no two events (endpoints or 

intersections)  have  equal  x-coordinates.  The  order  of  processing  events  of  equal  x-coordinate  is  irrelevant. 

Assuming that no two events coincide at the same point in the plane, lexicographic (x, y)-ordering is a convenient 

systematic way to define 'nextX'.

More serious forms of degeneracy arise when events coincide in the plane, such as more than two segments  

intersecting  in  the  same  point.  This  type  of  degeneracy  is  particularly  difficult  to  handle  in  the  presence  of 

numerical errors, such as rounding errors. In the configuration shown in Exhibit 25.6 an endpoint of u lies exactly 

or nearly on segment s. We may not care whether the intersection routine answers 'yes' or 'no' to the question "Do s 

and u intersect?" but we certainly expect a 'yes' when asking "Do t and u intersect?" This example shows that the  

slightest numerical inaccuracy can cause a serious error: The algorithm may fail to report the intersection of t and  

u, which it would clearly see if it  bothered to look - but the algorithm looks the other way and never asks the 

question "Do t and u intersect?"

Exhibit 25.6: A degenerate configuration may lead to inconsistent 

results.

The trace of the plane-sweep for reporting intersections may look as follows:

1. s is inserted into the y-table

2. t is inserted above s into the y-table, and s and t are tested for intersection: No intersection is found

3. u is inserted below s in the y-table (since the evaluation of the function s(x) may conclude that the left 

endpoint of u lies below s); s and u are tested for intersection, but the intersection routine may conclude  

that s and u do not intersect: u remains below s
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4. Delete u from the y-table

5. Delete s from the y-table

6. Delete t from the y-table

Notice  the  calamity  that  struck  at  the  critical  step  3.  The  evaluation  of  a  linear  expression  s(x)  and  the  

intersection routine for two segments both arrived at a result that, in isolation, is reasonable within the tolerance of  

the underlying arithmetic. The two results together are inconsistent! If the evaluation of s(x) concludes that the left  

endpoint of u lies below s, the intersection routine  must conclude that s and u intersect! If these two geometric 

primitives fail to coordinate their answers, catastrophe may strike. In our example, u and t never become neighbors 

in the y-table, so their intersection gets lost.

Exercises

1. Show that there may be Θ(n2) intersections in a set of n line segments.

2. Design a plane-sweep algorithm that determines in O(n · log n) time whether two simple polygons with a 

total of n vertices intersect.

3. Design a plane-sweep algorithm that determines in O(n · log n) time whether any two disks in a set of n  

disks intersect.

4. Design a plane-sweep algorithm that solves the line visibility problem discussed in chapter 24 in the section 

“Visibility in the plane: a simple algorithm whose analysis is not” in time O((n + k) · log n), where k ∈ O(n2) 

is the number of intersections of the line segments.

5. Give a configuration with the smallest possible number of line segments for which the first intersection  

point reported by the plane-sweep algorithm in chapter 25 in the section “Sweeping across intersections” is  

not the leftmost intersection point.

6. Adapt the plane-sweep algorithm presented in chapter 25 in the section “Sweeping across intersections” to 

detect all intersections among a given set of n horizontal or vertical line segments. You may assume that the 

line segments do not overlap. What is the time complexity of this algorithm if the horizontal and vertical  

line segments intersect in k points?

7. Design a plane-sweep algorithm that finds all intersections among a given set of n rectangles all of whose 

sides are parallel to the coordinate axes. What is the time complexity of your algorithm?
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